Quiz 2

October 19, 2018

Determine the truth or falsity of each of the following statements. Be sure to explain your answers.

1. If A is invertible and $A B$ is invertible, then B is invertible.

Solution. This is true. If A and $A B$ are invertible, then A^{-1} is invertible and

$$
B=I B=\left(A^{-1} A\right) B=A^{-1}(A B) .
$$

Thus, as the product of invertible matrices is invertible, B is invertible.
2. If A is not invertible and B is not invertible, then $A B$ is not invertible.

Solution. This is false. Let

$$
A=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Then neither A nor B is invertible, but

$$
A B=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=[2]
$$

is invertible.
3. There exists a vector

$$
\vec{a}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \in \mathbb{R}^{3}
$$

such that $[T]$ is invertible, where T is the linear function $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by the formula

$$
T(\vec{v})=\vec{a} \times \vec{v}, \quad \vec{v} \in \mathbb{R}^{3}
$$

Solution. This is false. Choose a nonzero vector \vec{x} in \mathbb{R}^{3} that is colinear with \vec{a}. Then

$$
[T] \vec{x}=T(\vec{x})=\vec{a} \times \vec{x}=0 .
$$

But then $[T]$ cannot be invertible as it cannot have a left inverse: if $B[T]=I$, then

$$
\vec{x}=I \vec{x}=B[T] \vec{x}=0,
$$

contradicting the fact that \vec{x} was chosen to be a nonzero vector.

